GRB Distance Indicators

Dan Kocevski, Edison Liang Rice University

Outline

- Overview of proposed distance indicators
 - Lag-Luminosity
 - Variability-Luminosity
 - Epk-Eiso
 - Epk-Luminosity
- Estimated Redshift Distribution
- Estimated Luminosity Functions
 - via non-parametric techniques
 - Comparison between lag-lum and Epk-Eiso results
- Perils of correlation hunting
 - Examples of bogus distance correlations
 - Simple test to discriminate against them
- The type of distance indicator we really need
 - The promises of Swift

What Can We To Do With GRBs?

- Probe the Early Universe!
 - 28-1800 keV -rays suffer little extinction
 - Potentially probe out to $z \sim 10$ or more
- Understand the Progenitor Evolution
 - GRBs linked to massive stars
 - Comoving rate density could trace SFR
 - We Want To Make Madau plots
- Stellar Initial Mass Function (IMF)
 - "Top-Heavy" at high redshift (Larson 1998)
 - More massive progenitors with higher z

Hubble Deep Field, STSci

Distance Indicators

- Lag-Luminosity
 - Norris et. al. 2000
 - Measured with 7 GRBs (BATSE)

$$L = 2.51 \times 10^{51} (\Delta t_{lag} / 0.1)^{-1.14}$$

- Variability Luminosity
 - Fenimore & Ramirez-Ruiz 2000
 - Measured with 7 GRBs (BATSE)

$$L \propto V^p$$

- Epk vs. Erad Correlation
 - Amati et. al. 2002
 - Calibrated with 12 GRBS (BSAX and BATSE)

$$E_{pk} \propto E_{rad}^{0.52 \pm 0.06}$$

- Erad vs. Luminosity Correlation
 - Yonetoku et. al. 2000
 - Produced with 24 GRBs (BSAX and BATSE)

$$L = \left[E_{pk} (1+z) \right]^{.94 \pm 0.19}$$

• Can Solve for z thru numerical iteration

GRB With Known Redshift

- About 30 GRBs With Known Redshift
- Like To Understand GRB L(z) Function
 - How does L vary with distance, if at all
 - Get the comoving rate density
 - Could tell us about the progenitor
- Just Plot L(z) vs. z, right?
 - $-L(z) \sim (1+z)^{2.47}$
 - Compare to QSOs
 - $-L(z) \sim (1+z)^{3.0} z < 1.5$
 - $L(z) \sim \text{constant}$ 1.5 < z < 3
- Need to account for truncation effects!
 - Need large sample of L and z
 - 24 GRBs not enough!
 - Pseudo Redshifts to the Rescue

Not So Fast

Accounting for Truncation Effects

- Must Account for Data Selection Effects
 - Lynden-Bell C Method (Lynden-Bell 1969)
 - Straightforward if selection bias is known
 - Based on maximum likelihood arguments
- Applied in Quasar Studies
 - Performed by Meloney & Petrosian 1999
- Applied in GRBs
 - Llyod-Ronning et. al. 2002
 - Used L-Varibility correlation for 220 GRBs
 - Found $L(z) \sim (1+z)^{1.4}$
 - Found constant GRB/SFR rate after $z \sim 2$

Pseudo Redshift Distributions

- Lag-Luminosity
 - about 200 BATSE GRBs
 - CCF analysis (chan 1-3)
- 1E+59
 1E+58
 1E+57
 1E+56
 0 0.5 1 1.5 2 2.5
 Redshift

- Epk-Eiso
 - about 150 BATSE GRBs
 - time resolved spectral fits

Luminosity Functions

- Lag-Luminosity
 - about 200 GRBs
 - $-L \sim (1+z)^{1.6}$
 - $N(>L') \sim L^{-0.5}$
 - $N(>L') \sim L^{-2.5}$
 - Similar to L-V results
 - Llyod-Ronning et. al. 2002

Pseudo Redshift Distributions

- Lag-Luminosity
 - about 200 GRBs

- Epk-Eiso
 - about 150 GRBs
- Similar Distributions
 - Individual redshifts do not necessarily correlate!

Intrinsic Parameter Correlations

- Intrinsic lag does not correlate to Epk
 - Partially correlated to Eiso
 - Expected if lag-lum, Epk-Eiso, Epk-Lum were all true

Intrinsic Parameter Correlations

- Intrinsic Epk-Eiso Not Consistant with Lag-Lum
 - Redshifts found from lag-lum
 - Epk and Eiso found using z(lag-lum)

How to Test For Fake Correlations

- Correlation hunting is dangerous!
 - artificial correlations are easy to produce
 - Redshift on both sides of equation!
 - At best: partial correlations
 - At worst: complete tautology
- Easy method of checking
 - Randomize the redshifts and recalculate the correlation coefficients
 - Repeat 1000+ times

The Promise of Swift

- Need Distance Indicator That Does Not Involve z!
 - Need distance independent parameter correlated to Lum/Eiso
 - B-V for supernova Ia is a nice example!
- The Promise of Swift
 - − Large number of GRBs with known z (~ hundreds)
 - Hopefully find such a parameter
 - Ability to test/confirm proposed distance indicators
 - Lag should still be detectable, Epk not so much
 - Extend/test distance correlations to lower energies (XRF)?

Conclusions

- lag-lum and Epk-Eiso partially consistent
 - Although resulting distributions are similar,
 individual redshift do not necessarily correlate
 - Similar estimates on Luminosity evolution
 - Similar luminosity functions
 - Intrinsic parameters partially correlate
- Spurious correlations are a problem
 - Need distance independent method of finding Lum
 - Must test all proposed distance indicators!